代表性论文
[1] L. Zhao, W. J. Lv, X. Y. Zhang, L. Zeng*, Domain Adaptation on Point Clouds for 6D Pose Estimation in Bin-picking Scenarios, 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023).
[2] X.H. L., Y. K. Ding, J. Guo, X.S. Lai, S. H. Ren, W. S. Feng, L. Zeng*, Edge-aware Neural Implicit Surface Reconstruction, International Conference on Multimedia and Expo (CCF-B), 2023.
[3] H. Zhang, H. Z. Liang, L. Cong, J. Z. Lyu, L. Zeng∗, P. F. Feng, and J. W. Zhang, Reinforcement Learning Based Pushing and Grasping Objects from Ungraspable Poses, IEEE International Conference Robotic and Automation (ICRA2023).
[4] L. C. Xiao, Z. B. Xu, L. Zeng*, X. P. Liu, Assembly language design and development for reconfigurable flexible assembly line, Robotics and Computer-Integrated Manufacturing (JCR Q1, IF5.1), 2022.
[5] Z. Sun, P. F. Feng, L. Zeng*, S. Q. Zhang, X. Cheng, Adaptive Machining Scheme for a Multi-Hole Part with Multi-Position Accuracy Tolerances, Journal of Advanced Manufacturing Technology, 2022
[6] S. Wang, H. Y. Wang, F. Yang, F. Liu, L. Zeng*, Attention-based deep learning for chip-surface-defect detection, Journal of Advanced Manufacturing Technology, 2022.
[7] 1. L. Zeng, W. J. Lv, Z. K.Dong, Y. J. Liu, PPR-Net++, Accurate 6-D Pose Estimation in Stacked Scenarios, IEEE Transactions on Automation Science and Engineering, 2021, 1(1): 1-13.
[8] 2. F. Yang, k. Wu, S. Y. Zhang, G. N. Jiang, Y. Liu, F. Zheng, W. Zhang, C. J. Wang and L. Zeng, Class-Aware Contrastive Semi-Supervised Learning, 2022 IEEE Computer Vision and Pattern Recognition (CVPR2022, CCF-A).
[9] L. Zeng, W. J. Lv, X. Y. Zhang, Y. J. Liu, ParametricNet: 6DoF Pose Estimation Network for Parametric Shapes in Stacked Scenarios, IEEE International Conference Robotic and Automation (ICRA 2021).
[10] Y. H. Han, J. Pan, M. F. Xia, L. Zeng, Y. J. Liu, Efficient SE(3) Reachability Map Generation via Interplanar Integration of Intra-planar Convolutions, IEEE Conference Robotic and Automation (ICRA 2021).
[11] S. M. Li, L. Zeng*, Pingfa Feng, Dingwen Yu, An accurate probe pre-travel error compensation model for five-axis OMI system, Precision Engineering (JCR Q1, IF3.1), 2020, vol. 62, pp. 256-264.
[12] Y. M. Li, L. Zeng*, K. Tang, C. Xie, Orientation-point relation-based inspection path planning method for 5-axis OMI system, Robotics and Computer-Integrated Manufacturing (JCR Q1, IF5.1), 2020, vol. 51, pp. 1-17.
[13] Y. M. Li, L. Zeng*, K. Tang, S. M. Li, A dynamic pre-travel error prediction model for the kinematic touch trigger probe, Measurement (SCI, JCR 1区, IF3.4), 2019.
[14] Z. K. Dong, S. C. Liu, T. Zhou, H. Cheng, L. Zeng*, X. Y. Yu, H. D. Liu, PPR-Net: Point-wise Pose Regression Network for Instance Segmentation and 6D Pose Estimation in Bin-picking Scenarios, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019).
[15] Y. M. Li, L. Zeng*, K. Tang, C. Xie, Orientation-point relation based inspection path planning method for 5-axis OMI system, Robotics and Computer-Integrated Manufacturing (JCR 1区, IF4.4), 2019.
[16] L. Zeng*, Z.-k. Dong, J. Y. Yu, J. Hong, H. Y. Wang, Sketch-based Retrieval and Instantiation of Parametric Parts [J], Computer Aided Design (JCR 1区, IF3.1), 2019, 113(82-95).
[17] S. M. Li, L. Zeng*, P. F. Feng Y. M. , Li, C. Xu, Y. Ma, Error Compensation using 3D error map for OMI with touch trigger probe, Journal of Advanced Manufacturing Technology (JCR 2区, IF2.5), 2019.
[18] B. Li, P. F. Feng, L. Zeng*, et al. Path planning method for on-machine inspection of aerospace structures based on adjacent feature graph [J]. Robotics and Computer-Integrated Manufacturing (JCR 1区, IF4.4), 2018, 54:17-34.
[19] S. L. Mi, X. Y. Wu, L. Zeng*. Optimal build orientation based on material changes for FGM parts [J]. International Journal of Advanced Manufacturing Technology (JCR 2区, IF2.5), 2017, 94(3):1-14.
[20] Y. F. Xu, T. Fan, M. Xu, L. Zeng. SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters, ECCV 2018 (全球计算机视觉三大会议之一).
[21] L. Zeng*, Y. J. Liu, S. H. Lee, and M. M. F. Yuen. Q-Complex: Efficient Non-Manifold Boundary Representation with Inclusion Topology, Computer-Aided Design (JCR 1区,IF3.1), Vol. 44, No. 11, pp.1115-1126, 2012.
[22] L. Zeng*, L. M. L. Lai, D. Qi, Y. H. Lai, M. M. F. Yuen. Efficient Slicing Procedure based on Adaptive Layer Depth Normal Image, Computer-Aided Design (JCR 1区,IF3.1), Vol.43, No. 12, pp.1577-1586, 2011.
主要专利成果
目前,共申请专利38项,其中已授权发明专利21项,主要分布在可重构柔性装配、视觉抓取、缺陷检测和柔性装配。其中代表性的专利:
1. 曾龙; 赵嘉宇; 刘冠宏 ; 面向工业堆叠零件的抓取方法、终端设备及可读存储介质, 中国, ZL202010916161.0
2. 曾龙; 吕伟杰; 张欣宇 ; 面向工业零件6D位姿估计的方法及计算机可读存储介质, 中国,ZL202010872000.6
3. 曾龙; 林垟钵; 董至恺; 俞佳熠; 赵嘉宇 ; 一种应用于参数化零件的视觉机械臂抓取方法及装置,中国, ZL202010048562.9
4. 曾龙; 陈敏鹤; 邱楚锋; 杨远勇 ; 可重构柔性装配系统, 中国, 201910465156.X
5. 曾龙、张浩、冯平法,一种基于强化学习的堆叠场景机械臂抓取方法与装置,发明专利,ZL202110814252.8
6. 曾龙、张欣宇、吕伟杰多种类工业零件堆叠场景的仿真数据集生成方法及装置,发明专利ZL202110648136.3
7. 曾龙、胡松、赖显松、黄家明、冯平法一种面向可重构柔性装配线的可编程工夹具库,发明专利,ZL202110693909.X
8. 曾龙、王宏羽、杨凡、王硕、林宜龙、刘飞一种基于YOLO的深度学习芯片封装裂纹缺陷检测方法,发明专利,ZL202110219336.7
9. 曾龙、欧雪燕、冯平法、谢颂强基于集成学习的光纤缺陷检测方法与装置,发明专利,ZL202110744198.4
10. 赵铖、曾龙、罗博、陈敏鹤一种支持手指多种布局的欠驱动手手掌,发明专利,ZL201810608856.5
其中,可重构柔性装配相关发明专利,已完成产业成果转化。